95 research outputs found

    Geologic Mapping of the Aristarchus Plateau Region on the Moon

    Get PDF
    Aristarchus plateau (~25 N, 40 W) is a volcanologically diverse region containing sinuous rilles, volcanic depressions, mare material of various ages - including a candidate for the youngest mare unit on the lunar surface - pyroclastic deposits, and material of possible highland origin [1-5]. Here, we present preliminary mapping of a 13deg x 10deg area around Aristarchus plateau [6]. Interpretations of the region s volcanic evolution have implications for the global history of lunar volcanism, the crustal and mantle development of the Moon, and may ultimately help support successful lunar exploration [7]

    Linking Home Plate and Algonquin Class Rocks through Microtextural Analysis: Evidence for Hydrovolcanism in the Inner Basin of Columbia Hills, Gusev Crater

    Get PDF
    Examining the his-tory of a rock as the summed history of its constituent grains is a proven and powerful strategy that has been used on Earth to maximize the information that can be gleaned from limited samples. Grain size, sorting, roundness, and texture can be observed at the handlens scale, and may reveal clues to transport regime (e.g. fluvial, glacial, eolian) and transport distance. Diagenetic minerals may be of a form and textural context to allow identification, and to point to dominant diagenetic processes (e.g. evaporitic concentration, intermittent dissolution, early vs. late diagenetic emplacement). Handlens scale features of volcaniclastic particles may be diagnostic of primary vs recycled (by surface processes) grains and may provide information about eruptive patterns and processes. When the study site is truly remote, such as Mars, and when there are severe limitations on sample return or sample analysis with other methods, examination at the hand lens scale becomes critical both for extracting a maximum of information, and for best utilizing finite analytical capabilities

    NASA's Desert RATS Science Backroom: Remotely Supporting Planetary Exploration

    Get PDF
    NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. In recent years, a D-RATS science backroom has conducted science operations and tested specific operational approaches. Approaches from the Apollo, Mars Exploration Rovers and Phoenix missions were merged to become the baseline for these tests. In 2010, six days of lunar-analog traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. In 2011, a variety of exploration science scenarios that tested operations for a near-earth asteroid using several small exploration vehicles and a single habitat. Communications between the ground and the crew in the field used a 50-second one-way delay, while communications between crewmembers in the exploration vehicles and the habitat were instantaneous. Within these frameworks, the team evaluated integrated science operations management using real-time science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results. Exploration scenarios for Mars may include architectural similarities such as crew in a habitat communicating with crew in a vehicle, but significantly more autonomy will have to be given to the crew rather than step-by-step interaction with a science backroom on Earth

    Geologic mapping of the Urvara and Yalode Quadrangles of Ceres

    Get PDF
    We conducted geologic mapping of the Urvara (Ac-13) and Yalode (Ac-14) Quadrangles (21–66°S, 180–360°E) of the dwarf planet Ceres utilizing morphologic, topographic, and compositional information acquired by NASA's Dawn mission. The geologic characteristics of the two large impact basins Urvara (170 km diameter) and Yalode (260 km diameter) and their surroundings were investigated using Dawn Framing Camera datasets, including Survey (415 m/pixel), HAMO (140 m/pixel), and LAMO (35 m/pixel) images and mosaics, color and color ratio images, and DTMs derived from stereo-photogrammetry. Geologic mapping demonstrates that impact cratering has dominated the geologic history of the Urvara and Yalode Quadrangles, with early cratered terrain formation followed by formation of the large basins and widespread emplacement of basin-related smooth material. Impact craters display a wide range of preservation states from nearly completely buried/degraded forms to more recent pristine craters with terraced inner walls and lobate ejecta deposits. Cross-cutting relationships and morphologic signatures show that the Urvara impact followed the Yalode impact, consistent with ages derived from crater size-frequency distributions (580 ± 40 Ma for Yalode and 550 ± 50 Ma for Urvara). Observed differences in basin materials and rim morphology suggest heterogeneities in the substrate excavated by impact. Smooth deposits that cover large areas of the quadrangles, including the basin floors, rims, and exterior zones, are interpreted to be dominated by Urvara ejecta but Yalode ejecta and localized ice-rich flow material may be minor components. Geologic mapping results and simulations of ejecta emplacement suggest that Urvara and Yalode ejecta deposits extend for large distances (more than two crater diameters from the basin centers) and may serve as important stratigraphic markers for the geologic record of Ceres

    Visible and near-infrared multispectral analysis of geochemically measured rock fragments at the Opportunity landing site in Meridiani Planum

    Get PDF
    We have used visible and near‐infrared Panoramic Camera (Pancam) spectral data acquired by the Opportunity rover to analyze 15 rock fragments at the Meridiani Planum landing site. These spectral results were then compared to geochemistry measurements made by the in situ instruments Mössbauer (MB) and Alpha Particle X‐ray Spectrometer (APXS) to determine the feasibility of mineralogic characterization from Pancam data. Our results suggest that dust and alteration rinds coat many rock fragments, which limits our ability to adequately measure the mineralogy of some rocks from Pancam spectra relative to the different field of view and penetration depths of MB and APXS. Viewing and lighting geometry, along with sampling size, also complicate the spectral characterization of the rocks. Rock fragments with the same geochemistry of sulfate‐rich outcrops have similar spectra, although the sulfate‐rich composition cannot be ascertained based upon Pancam spectra alone. FeNi meteorites have spectral characteristics, particularly ferric oxide coatings, that generally differentiate them from other rocks at the landing site. Stony meteorites and impact fragments with unknown compositions have a diverse range of spectral properties and are not well constrained nor diagnostic in Pancam data. Bounce Rock, with its unique basalt composition, is easily differentiated in the Pancam data from all other rock types at Meridiani Planum. Our Pancam analyses of small pebbles adjacent to these 15 rock fragments suggests that other rock types may exist at the landing site but have not yet been geochemically measured

    Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation, Gale crater, Mars

    Get PDF
    Recent robotic missions to Mars have offered new insights into the extent, diversity and habitability of the Martian sedimentary rock record. Since the Curiosity rover landed in Gale crater in August 2012, the Mars Science Laboratory Science Team has explored the origins and habitability of ancient fluvial, deltaic, lacustrine and aeolian deposits preserved within the crater. This study describes the sedimentology of a ca 13 m thick succession named the Pahrump Hills member of the Murray formation, the first thick fine‐grained deposit discovered in situ on Mars. This work evaluates the depositional processes responsible for its formation and reconstructs its palaeoenvironmental setting. The Pahrump Hills succession can be sub‐divided into four distinct sedimentary facies: (i) thinly laminated mudstone; (ii) low‐angle cross‐stratified mudstone; (iii) cross‐stratified sandstone; and (iv) thickly laminated mudstone–sandstone. The very fine grain size of the mudstone facies and abundant millimetre‐scale and sub‐millimetre‐scale laminations exhibiting quasi‐uniform thickness throughout the Pahrump Hills succession are most consistent with lacustrine deposition. Low‐angle geometric discordances in the mudstone facies are interpreted as ‘scour and drape’ structures and suggest the action of currents, such as those associated with hyperpycnal river‐generated plumes plunging into a lake. Observation of an overall upward coarsening in grain size and thickening of laminae throughout the Pahrump Hills succession is consistent with deposition from basinward progradation of a fluvial‐deltaic system derived from the northern crater rim into the Gale crater lake. Palaeohydraulic modelling constrains the salinity of the ancient lake in Gale crater: assuming river sediment concentrations typical of floods on Earth, plunging river plumes and sedimentary structures like those observed at Pahrump Hills would have required lake densities near freshwater to form. The depositional model for the Pahrump Hills member presented here implies the presence of an ancient sustained, habitable freshwater lake in Gale crater for at least ca 103 to 107 Earth years

    The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    Get PDF
    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts of its ejecta field (depending upon choice of chronology system), and its ejecta field is the second oldest unit in this quadrangle. The relatively young craters and their related ejecta materials in this quadrangle are in stark contrast to the surrounding heavily cratered units that are related to the billion years old or older Rheasilvia and Veneneia impact basins and Vesta's ancient crust preserved on Vestalia Terra

    Overview of Spirit Microscopic Imager Results

    Get PDF
    This paper provides an overview of Mars Exploration Rover Spirit Microscopic Imager (MI) operations and the calibration, processing, and analysis of MI data. The focus of this overview is on the last five Earth years (2005-2010) of Spirit's mission in Gusev crater, supplementing the previous overview of the first 450 sols of the Spirit MI investigation. Updates to radiometric calibration using in-flight data and improvements in high-level processing are summarized. Released data products are described, and a table of MI observations, including target/feature names and associated data sets, is appended. The MI observed natural and disturbed exposures of rocks and soils as well as magnets and other rover hardware. These hand-lens-scale observations have provided key constraints on interpretations of the formation and geologic history of features, rocks, and soils examined by Spirit. MI images complement observations by other Spirit instruments, and together show that impact and volcanic processes have dominated the origin and evolution of the rocks in Gusev crater, with aqueous activity indicated by the presence of silica-rich rocks and sulfate-rich soils. The textures of some of the silica-rich rocks are similar to terrestrial hot spring deposits, and observations of subsurface cemented layers indicate recent aqueous mobilization of sulfates in places. Wind action has recently modified soils and abraded many of the rocks imaged by the MI, as observed at other Mars landing sites. Plain Language Summary The Microscopic Imager (MI) on NASA's Spirit rover returned the highest-resolution images of the Martian surface available at the time of the 2004-2010 mission. Designed to survive 90 Mars days (sols) and search for evidence of water in the past, Spirit returned data for 2210 sols, far exceeding all expectations. This paper summarizes the scientific insights gleaned from the thousands of MI images acquired during the last 5years of the mission, supplementing the summary of the first 450 sols of the Spirit MI investigation published previously (Herkenhoff et al., ). Along with data from the other instruments on Spirit, MI images guided the scientific interpretation of the geologic history of the rocks and soils observed in Gusev crater on Mars. We conclude that the geologic history of the area explored by Spirit has been dominated by impacts and volcanism, and that water, perhaps very hot water, was involved in the evolution of some of the rocks and soils. More recently, winds have moved soil particles and abraded rocks, as observed elsewhere on Mars. These results have improved our understanding of Mars' history and informed planning of future missions to Mars.National Aeronautics and Space AdministrationPublic domain articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore